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1. Executive Summary
1.1 Purpose and Scope
Data quality is the foundation of trustworthy analytics and reliable business decisions. This guide provides comprehensive patterns for implementing data quality controls in Delta Live Tables pipelines, covering validation rules, quarantine strategies, monitoring dashboards, and remediation workflows.
1.2 Why Data Quality Matters
Poor data quality has measurable business impact:
	Impact Area
	Consequence
	Industry Average Cost

	**Decision Making**
	Wrong insights lead to bad decisions
	15-25% revenue impact

	**Operational Efficiency**
	Manual data fixes consume resources
	20-30% of analyst time

	**Customer Experience**
	Incorrect data affects service
	Customer churn increase

	**Compliance**
	Regulatory violations
	Fines and penalties

	**Trust**
	Loss of confidence in data
	Reduced data adoption



1.3 DLT Quality Capabilities
Delta Live Tables provides native data quality features that eliminate the need for separate validation frameworks:
	Capability
	Traditional Approach
	DLT Approach

	**Rule Definition**
	External rules engine
	Inline expectations

	**Validation Execution**
	Separate validation job
	Built into pipeline

	**Metrics Collection**
	Custom logging
	Automatic event log

	**Failed Record Handling**
	Complex branching
	expect_or_drop

	**Quality Dashboards**
	Custom development
	Query event log



1.4 Data Quality Dimensions
This guide addresses the six core dimensions of data quality:
	Dimension
	Definition
	DLT Implementation

	**Completeness**
	Required data is present
	Null checks, required field validation

	**Accuracy**
	Data reflects reality
	Range checks, business rule validation

	**Consistency**
	Data agrees across sources
	Cross-table validation, referential checks

	**Timeliness**
	Data is current
	Freshness checks, latency monitoring

	**Validity**
	Data conforms to formats
	Regex patterns, type validation

	**Uniqueness**
	No unwanted duplicates
	Deduplication, uniqueness constraints



2. Data Quality Framework
2.1 Layered Quality Strategy
Implement quality controls at each layer of the medallion architecture with increasing strictness:
┌─────────────────────────────────────────────────────────────────────────────┐
│                    LAYERED DATA QUALITY STRATEGY                             │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│   BRONZE LAYER                                                              │
│   ┌─────────────────────────────────────────────────────────────────────┐  │
│   │  Minimal Validation - Preserve raw data for debugging               │  │
│   │  • Schema validation (can we parse the data?)                       │  │
│   │  • Critical nulls only (primary keys)                               │  │
│   │  • Action: Log all, drop none                                       │  │
│   └─────────────────────────────────────────────────────────────────────┘  │
│                                    ▼                                        │
│   SILVER LAYER                                                              │
│   ┌─────────────────────────────────────────────────────────────────────┐  │
│   │  Comprehensive Validation - Ensure data quality                     │  │
│   │  • Completeness (all required fields)                               │  │
│   │  • Validity (formats, types, ranges)                                │  │
│   │  • Uniqueness (deduplication)                                       │  │
│   │  • Action: Log violations, drop invalid records                     │  │
│   └─────────────────────────────────────────────────────────────────────┘  │
│                                    ▼                                        │
│   GOLD LAYER                                                                │
│   ┌─────────────────────────────────────────────────────────────────────┐  │
│   │  Business Rule Validation - Ensure business integrity               │  │
│   │  • Consistency (cross-table relationships)                          │  │
│   │  • Business rules (domain-specific logic)                           │  │
│   │  • Aggregation integrity (totals match)                             │  │
│   │  • Action: Fail on critical violations                              │  │
│   └─────────────────────────────────────────────────────────────────────┘  │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘
2.2 Quality Rule Categories
Organize expectations into logical categories for maintainability:
import dlt
from pyspark.sql import functions as F

# Define quality rules by category for reusability
QUALITY_RULES = {
    # Completeness rules - ensure required data is present
    "completeness": {
        "has_primary_key": "id IS NOT NULL",
        "has_timestamp": "event_timestamp IS NOT NULL",
        "has_required_fields": "customer_id IS NOT NULL AND product_id IS NOT NULL"
    },

    # Validity rules - ensure data format is correct
    "validity": {
        "valid_email": "email RLIKE '^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$'",
        "valid_phone": "phone RLIKE '^\\+?[1-9]\\d{1,14}$'",
        "valid_date": "order_date <= current_date()",
        "valid_status": "status IN ('ACTIVE', 'INACTIVE', 'PENDING', 'CANCELLED')"
    },

    # Accuracy rules - ensure data values are reasonable
    "accuracy": {
        "positive_amount": "amount > 0",
        "reasonable_quantity": "quantity BETWEEN 1 AND 10000",
        "valid_percentage": "discount_rate BETWEEN 0 AND 100",
        "price_range": "unit_price BETWEEN 0.01 AND 1000000"
    },

    # Consistency rules - ensure cross-field logic
    "consistency": {
        "dates_in_order": "end_date >= start_date",
        "total_matches": "ABS(subtotal + tax - total) < 0.01",
        "status_date_consistent": "NOT (status = 'COMPLETED' AND completed_date IS NULL)"
    },

    # Timeliness rules - ensure data freshness
    "timeliness": {
        "recent_data": "event_timestamp >= current_timestamp() - INTERVAL 24 HOURS",
        "not_future": "created_at <= current_timestamp()"
    }
}
2.3 Expectation Application Pattern
Apply categorized rules systematically to tables:
def apply_quality_rules(categories):
    """
    Create a combined expectation dictionary from specified categories.
    This allows consistent rule application across similar tables.
    """
    combined_rules = {}
    for category in categories:
        if category in QUALITY_RULES:
            combined_rules.update(QUALITY_RULES[category])
    return combined_rules


@dlt.table(name="silver_orders")
@dlt.expect_all_or_drop(apply_quality_rules(["completeness", "validity", "accuracy"]))
def silver_orders():
    """
    Apply completeness, validity, and accuracy rules to orders.
    Records failing any rule are dropped and tracked in event log.
    """
    return dlt.read_stream("bronze_orders")
3. Expectation Patterns
3.1 Completeness Expectations
Completeness ensures all required data is present. These rules should be applied at the Silver layer.
@dlt.table(name="silver_customers")
@dlt.expect_all({
    # Required fields for customer identification
    "customer_id_present": "customer_id IS NOT NULL",
    "email_present": "email IS NOT NULL",

    # Required fields for communication
    "contact_info_present": "phone IS NOT NULL OR email IS NOT NULL",

    # Required fields for business operations
    "address_complete": """
        address_line1 IS NOT NULL AND
        city IS NOT NULL AND
        country IS NOT NULL
    """,

    # Conditional completeness
    "business_fields_complete": """
        customer_type != 'BUSINESS' OR
        (company_name IS NOT NULL AND tax_id IS NOT NULL)
    """
})
def silver_customers():
    """
    Validate customer data completeness.

    Completeness rules ensure:
    1. Primary identifiers are always present
    2. At least one contact method exists
    3. Address is complete for shipping
    4. Business customers have required B2B fields
    """
    return dlt.read_stream("bronze_customers")
3.2 Validity Expectations
Validity ensures data conforms to expected formats and ranges:
@dlt.table(name="silver_transactions")
@dlt.expect_all_or_drop({
    # Format validation using regex
    "valid_transaction_id": "transaction_id RLIKE '^TXN-[0-9]{10}$'",
    "valid_currency_code": "currency RLIKE '^[A-Z]{3}$'",
    "valid_card_last_four": "card_last_four RLIKE '^[0-9]{4}$'",

    # Type validation
    "numeric_amount": "CAST(amount AS DECIMAL(18,2)) IS NOT NULL",

    # Range validation
    "valid_amount_range": "amount BETWEEN 0.01 AND 1000000",

    # Enumeration validation
    "valid_payment_method": "payment_method IN ('CREDIT', 'DEBIT', 'ACH', 'WIRE', 'CRYPTO')",
    "valid_transaction_type": "transaction_type IN ('PURCHASE', 'REFUND', 'CHARGEBACK', 'ADJUSTMENT')",

    # Temporal validation
    "valid_transaction_date": "transaction_date <= current_date()",
    "not_too_old": "transaction_date >= current_date() - INTERVAL 2 YEARS"
})
def silver_transactions():
    """
    Validate transaction data format and ranges.

    Validity rules ensure:
    1. IDs follow expected patterns
    2. Codes match ISO standards
    3. Amounts are within reasonable bounds
    4. Enumerations contain only valid values
    5. Dates are logically valid
    """
    return dlt.read_stream("bronze_transactions")
3.3 Accuracy Expectations
Accuracy ensures data values correctly represent reality:
@dlt.table(name="silver_orders")
@dlt.expect_all({
    # Mathematical accuracy
    "line_total_accurate": "ABS(quantity * unit_price - line_total) < 0.01",
    "order_total_accurate": "ABS(subtotal + tax_amount + shipping - total_amount) < 0.01",
    "discount_accurate": "discount_amount <= subtotal",

    # Business logic accuracy
    "shipping_for_physical": "product_type != 'PHYSICAL' OR shipping_amount > 0",
    "no_shipping_for_digital": "product_type != 'DIGITAL' OR shipping_amount = 0",

    # Referential accuracy (values exist in lookup)
    "valid_product": "product_id IN (SELECT product_id FROM LIVE.dim_products)",
    "valid_customer": "customer_id IN (SELECT customer_id FROM LIVE.dim_customers)"
})
def silver_orders():
    """
    Validate order calculation accuracy.

    Accuracy rules ensure:
    1. Mathematical calculations are correct
    2. Business logic is properly applied
    3. Foreign key relationships are valid
    """
    return dlt.read_stream("bronze_orders")
3.4 Consistency Expectations
Consistency ensures data agrees within and across records:
@dlt.table(name="silver_events")
@dlt.expect_all({
    # Temporal consistency
    "event_after_user_creation": """
        event_timestamp >= (
            SELECT created_at FROM LIVE.dim_users u
            WHERE u.user_id = event_user_id
        )
    """,

    # Logical consistency
    "session_event_order": """
        event_type != 'SESSION_END' OR
        event_timestamp > (
            SELECT MAX(event_timestamp) FROM LIVE.silver_events e
            WHERE e.session_id = session_id AND e.event_type = 'SESSION_START'
        )
    """,

    # Cross-field consistency
    "status_timestamp_match": """
        (status = 'COMPLETED' AND completed_at IS NOT NULL) OR
        (status != 'COMPLETED' AND completed_at IS NULL)
    """,

    # Value consistency
    "currency_consistent": """
        currency = (
            SELECT default_currency FROM LIVE.dim_accounts a
            WHERE a.account_id = account_id
        )
    """
})
def silver_events():
    """
    Validate event data consistency.

    Consistency rules ensure:
    1. Events occur after related entity creation
    2. Event sequences are logical
    3. Status fields match related timestamps
    4. Values match related dimension attributes
    """
    return dlt.read_stream("bronze_events")
3.5 Uniqueness Expectations
Uniqueness ensures no unwanted duplicate records:
@dlt.table(name="silver_customers_unique")
def silver_customers_unique():
    """
    Ensure customer uniqueness using deduplication.

    Strategy:
    1. Identify duplicates by business key
    2. Keep most recent record
    3. Log duplicate counts for monitoring
    """
    df = dlt.read_stream("bronze_customers")

    # Window for selecting most recent record
    window = Window.partitionBy("email").orderBy(F.desc("updated_at"))

    return (
        df
        .withColumn("row_num", F.row_number().over(window))
        .filter(F.col("row_num") == 1)
        .drop("row_num")
    )


# Alternative: Use SQL-style uniqueness check
@dlt.table(name="silver_orders_unique")
@dlt.expect("unique_order_id", """
    order_id NOT IN (
        SELECT order_id FROM LIVE.silver_orders_unique
        GROUP BY order_id
        HAVING COUNT(*) > 1
    )
""")
def silver_orders_unique():
    """
    Validate order uniqueness via expectation.
    Note: This approach is more expensive - prefer deduplication for large tables.
    """
    return dlt.read_stream("bronze_orders").dropDuplicates(["order_id"])
4. Quarantine Architecture
4.1 Quarantine Design Principles
A quarantine system captures invalid records for analysis and remediation without blocking the pipeline:
┌─────────────────────────────────────────────────────────────────────────────┐
│                        QUARANTINE ARCHITECTURE                               │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│   Source Data                                                               │
│       │                                                                     │
│       ▼                                                                     │
│   ┌─────────────────────────────────────────────────────────────────────┐  │
│   │                     VALIDATION LAYER                                 │  │
│   │                                                                      │  │
│   │   ┌─────────────┐    Pass    ┌─────────────┐                       │  │
│   │   │   Quality   │ ─────────▶ │   Clean     │ ──▶ Downstream       │  │
│   │   │   Rules     │            │   Table     │                       │  │
│   │   └─────────────┘            └─────────────┘                       │  │
│   │         │                                                           │  │
│   │         │ Fail                                                      │  │
│   │         ▼                                                           │  │
│   │   ┌─────────────┐            ┌─────────────┐                       │  │
│   │   │  Quarantine │ ─────────▶ │  Analysis   │ ──▶ Remediation      │  │
│   │   │   Table     │            │  Dashboard  │                       │  │
│   │   └─────────────┘            └─────────────┘                       │  │
│   │                                                                      │  │
│   └─────────────────────────────────────────────────────────────────────┘  │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘
4.2 Basic Quarantine Pattern
import dlt
from pyspark.sql import functions as F

# Define validation rules
VALIDATION_RULES = {
    "has_order_id": "order_id IS NOT NULL",
    "has_customer_id": "customer_id IS NOT NULL",
    "valid_amount": "amount > 0",
    "valid_status": "status IN ('PENDING', 'COMPLETED', 'CANCELLED')"
}


@dlt.table(name="silver_orders_clean")
@dlt.expect_all_or_drop(VALIDATION_RULES)
def silver_orders_clean():
    """
    Clean orders table - contains only valid records.
    Invalid records are automatically dropped and logged.
    """
    return dlt.read_stream("bronze_orders")


@dlt.table(name="quarantine_orders")
def quarantine_orders():
    """
    Quarantine table - captures all records that fail validation.

    Includes:
    - Original record data
    - Which rule(s) failed
    - When the record was quarantined
    - Source file for tracing
    """
    df = dlt.read_stream("bronze_orders")

    # Build validation failure conditions
    failure_conditions = []
    for rule_name, rule_expr in VALIDATION_RULES.items():
        failure_conditions.append(
            F.when(~F.expr(rule_expr), rule_name)
        )

    # Identify records that fail ANY validation
    combined_condition = F.expr(" OR ".join([
        f"NOT ({rule})" for rule in VALIDATION_RULES.values()
    ]))

    return (
        df
        .filter(combined_condition)
        .withColumn("failed_rules",
            F.array_compact(F.array(*failure_conditions))
        )
        .withColumn("quarantine_timestamp", F.current_timestamp())
        .withColumn("quarantine_reason",
            F.concat_ws(", ", F.col("failed_rules"))
        )
    )
4.3 Advanced Quarantine with Categorization
@dlt.table(name="quarantine_orders_detailed")
def quarantine_orders_detailed():
    """
    Advanced quarantine with failure categorization and severity.

    Categories:
    - CRITICAL: Missing primary identifiers
    - HIGH: Business rule violations
    - MEDIUM: Format/validation issues
    - LOW: Data quality warnings
    """
    df = dlt.read_stream("bronze_orders")

    # Define rules with categories and severity
    rules = [
        ("order_id IS NULL", "missing_order_id", "CRITICAL", "completeness"),
        ("customer_id IS NULL", "missing_customer_id", "CRITICAL", "completeness"),
        ("amount <= 0", "invalid_amount", "HIGH", "accuracy"),
        ("status NOT IN ('PENDING', 'COMPLETED', 'CANCELLED')", "invalid_status", "MEDIUM", "validity"),
        ("order_date > current_date()", "future_date", "MEDIUM", "validity"),
        ("email NOT RLIKE '^[^@]+@[^@]+$'", "invalid_email", "LOW", "validity")
    ]

    # Build failure detection
    failed_records = df.filter(
        F.expr(" OR ".join([rule[0] for rule in rules]))
    )

    # Add failure details
    for condition, name, severity, category in rules:
        failed_records = failed_records.withColumn(
            f"failed_{name}",
            F.when(F.expr(condition), True).otherwise(False)
        )

    # Aggregate failure information
    failure_columns = [f"failed_{rule[1]}" for rule in rules]

    return (
        failed_records
        .withColumn("failed_rules",
            F.array(*[
                F.when(F.col(col), F.lit(col.replace("failed_", "")))
                for col in failure_columns
            ])
        )
        .withColumn("failed_rules", F.array_compact(F.col("failed_rules")))
        .withColumn("failure_count", F.size(F.col("failed_rules")))
        .withColumn("max_severity",
            F.when(F.col("failed_missing_order_id") | F.col("failed_missing_customer_id"), "CRITICAL")
            .when(F.col("failed_invalid_amount"), "HIGH")
            .when(F.col("failed_invalid_status") | F.col("failed_future_date"), "MEDIUM")
            .otherwise("LOW")
        )
        .withColumn("quarantine_timestamp", F.current_timestamp())
        .withColumn("source_file", F.input_file_name())
        .drop(*failure_columns)
    )
4.4 Quarantine Lifecycle Management
@dlt.table(name="quarantine_summary")
def quarantine_summary():
    """
    Daily summary of quarantine activity for monitoring.
    """
    return (
        spark.table("LIVE.quarantine_orders_detailed")
        .groupBy(
            F.date_trunc("day", "quarantine_timestamp").alias("quarantine_date"),
            "max_severity"
        )
        .agg(
            F.count("*").alias("record_count"),
            F.collect_set("failed_rules").alias("unique_failures")
        )
    )


def archive_old_quarantine_records(retention_days=30):
    """
    Archive quarantine records older than retention period.

    Process:
    1. Move old records to archive table
    2. Delete from active quarantine
    3. Log archive operation
    """
    archive_date = f"current_date() - INTERVAL {retention_days} DAYS"

    # Archive old records
    spark.sql(f"""
        INSERT INTO archive.quarantine_orders_archive
        SELECT *, current_timestamp() as archived_at
        FROM production.quarantine_orders_detailed
        WHERE quarantine_timestamp < {archive_date}
    """)

    # Remove archived records
    spark.sql(f"""
        DELETE FROM production.quarantine_orders_detailed
        WHERE quarantine_timestamp < {archive_date}
    """)
5. Data Quality Metrics
5.1 Core Quality Metrics
Track these essential metrics for every pipeline:
	Metric
	Formula
	Target

	**Pass Rate**
	passed_records / total_records
	> 99%

	**Drop Rate**
	dropped_records / total_records
	< 1%

	**Failure Rate by Rule**
	rule_failures / total_records
	Varies

	**Quarantine Rate**
	quarantined / total_records
	< 5%

	**Remediation Rate**
	remediated / quarantined
	> 90%



5.2 Metrics Collection
@dlt.table(name="dq_metrics_raw")
def dq_metrics_raw():
    """
    Extract raw quality metrics from DLT event log.

    The event log automatically captures:
    - Records processed
    - Expectations evaluated
    - Pass/fail counts per expectation
    - Dropped record counts
    """
    return spark.sql("""
        SELECT
            timestamp,
            details:flow_progress:table_name as table_name,
            details:flow_progress:metrics:num_output_rows as output_rows,
            details:flow_progress:data_quality:expectations as expectations,
            details:flow_progress:data_quality:dropped_records as dropped_records
        FROM event_log(TABLE(LIVE.silver_orders_clean))
        WHERE event_type = 'flow_progress'
          AND details:flow_progress:data_quality IS NOT NULL
    """)


@dlt.table(name="dq_metrics_aggregated")
def dq_metrics_aggregated():
    """
    Aggregate quality metrics for reporting.
    """
    return (
        dlt.read("dq_metrics_raw")
        .groupBy(
            F.date_trunc("hour", "timestamp").alias("metric_hour"),
            "table_name"
        )
        .agg(
            F.sum("output_rows").alias("total_rows"),
            F.sum("dropped_records").alias("total_dropped"),
            F.count("*").alias("batch_count")
        )
        .withColumn("drop_rate",
            F.col("total_dropped") / (F.col("total_rows") + F.col("total_dropped"))
        )
        .withColumn("pass_rate",
            F.lit(1) - F.col("drop_rate")
        )
    )
5.3 Trend Analysis
-- Quality trend over time
SELECT
    date_trunc('day', metric_hour) as metric_date,
    table_name,
    SUM(total_rows) as total_processed,
    SUM(total_dropped) as total_dropped,
    ROUND(SUM(total_dropped) / SUM(total_rows + total_dropped) * 100, 2) as drop_rate_pct,
    ROUND(AVG(pass_rate) * 100, 2) as avg_pass_rate_pct
FROM LIVE.dq_metrics_aggregated
WHERE metric_hour >= current_timestamp() - INTERVAL 30 DAYS
GROUP BY 1, 2
ORDER BY 1 DESC, 2;


-- Quality degradation detection
WITH daily_metrics AS (
    SELECT
        date_trunc('day', metric_hour) as metric_date,
        table_name,
        AVG(drop_rate) as avg_drop_rate
    FROM LIVE.dq_metrics_aggregated
    GROUP BY 1, 2
),
metrics_with_change AS (
    SELECT
        *,
        LAG(avg_drop_rate) OVER (PARTITION BY table_name ORDER BY metric_date) as prev_drop_rate,
        avg_drop_rate - LAG(avg_drop_rate) OVER (PARTITION BY table_name ORDER BY metric_date) as drop_rate_change
    FROM daily_metrics
)
SELECT *
FROM metrics_with_change
WHERE drop_rate_change > 0.05  -- Alert if drop rate increased by 5%
ORDER BY metric_date DESC;
6. Quality Dashboards
6.1 Executive Dashboard Queries
-- Overall Data Quality Score
SELECT
    'Data Quality Score' as metric,
    ROUND(AVG(pass_rate) * 100, 1) as score,
    CASE
        WHEN AVG(pass_rate) >= 0.99 THEN 'Excellent'
        WHEN AVG(pass_rate) >= 0.95 THEN 'Good'
        WHEN AVG(pass_rate) >= 0.90 THEN 'Needs Attention'
        ELSE 'Critical'
    END as status
FROM LIVE.dq_metrics_aggregated
WHERE metric_hour >= current_timestamp() - INTERVAL 24 HOURS;


-- Quality by Data Domain
SELECT
    CASE
        WHEN table_name LIKE '%customer%' THEN 'Customer'
        WHEN table_name LIKE '%order%' THEN 'Orders'
        WHEN table_name LIKE '%product%' THEN 'Products'
        WHEN table_name LIKE '%transaction%' THEN 'Transactions'
        ELSE 'Other'
    END as data_domain,
    COUNT(DISTINCT table_name) as table_count,
    SUM(total_rows) as total_records,
    ROUND(AVG(pass_rate) * 100, 2) as avg_pass_rate
FROM LIVE.dq_metrics_aggregated
WHERE metric_hour >= current_timestamp() - INTERVAL 24 HOURS
GROUP BY 1
ORDER BY 4;


-- Top Quality Issues
SELECT
    table_name,
    failed_rule,
    COUNT(*) as failure_count,
    ROUND(COUNT(*) * 100.0 / SUM(COUNT(*)) OVER(), 2) as pct_of_all_failures
FROM (
    SELECT
        table_name,
        explode(failed_rules) as failed_rule
    FROM LIVE.quarantine_orders_detailed
    WHERE quarantine_timestamp >= current_timestamp() - INTERVAL 24 HOURS
)
GROUP BY 1, 2
ORDER BY 3 DESC
LIMIT 10;
6.2 Operational Dashboard Queries
-- Real-time Quality Status
SELECT
    table_name,
    MAX(timestamp) as last_update,
    SUM(CASE WHEN timestamp >= current_timestamp() - INTERVAL 1 HOUR THEN output_rows ELSE 0 END) as rows_last_hour,
    SUM(CASE WHEN timestamp >= current_timestamp() - INTERVAL 1 HOUR THEN dropped_records ELSE 0 END) as dropped_last_hour,
    CASE
        WHEN MAX(timestamp) < current_timestamp() - INTERVAL 2 HOURS THEN 'STALE'
        WHEN SUM(CASE WHEN timestamp >= current_timestamp() - INTERVAL 1 HOUR THEN dropped_records ELSE 0 END) /
             NULLIF(SUM(CASE WHEN timestamp >= current_timestamp() - INTERVAL 1 HOUR THEN output_rows + dropped_records ELSE 0 END), 0) > 0.05
        THEN 'DEGRADED'
        ELSE 'HEALTHY'
    END as health_status
FROM LIVE.dq_metrics_raw
GROUP BY 1;


-- Quarantine Backlog
SELECT
    max_severity,
    COUNT(*) as record_count,
    MIN(quarantine_timestamp) as oldest_record,
    DATEDIFF(current_timestamp(), MIN(quarantine_timestamp)) as days_oldest
FROM LIVE.quarantine_orders_detailed
GROUP BY 1
ORDER BY
    CASE max_severity
        WHEN 'CRITICAL' THEN 1
        WHEN 'HIGH' THEN 2
        WHEN 'MEDIUM' THEN 3
        ELSE 4
    END;
7. Alerting and Notification
7.1 Alert Definitions
# Define quality alerts
QUALITY_ALERTS = [
    {
        "name": "Critical Quality Failure",
        "condition": "drop_rate > 0.10",  # More than 10% dropped
        "severity": "P1",
        "notification": ["pagerduty", "slack"],
        "query": """
            SELECT table_name, drop_rate
            FROM LIVE.dq_metrics_aggregated
            WHERE metric_hour >= current_timestamp() - INTERVAL 1 HOUR
              AND drop_rate > 0.10
        """
    },
    {
        "name": "Quality Degradation",
        "condition": "drop_rate increased by 5%",
        "severity": "P2",
        "notification": ["slack", "email"],
        "query": """
            WITH current_rate AS (
                SELECT table_name, AVG(drop_rate) as current_drop_rate
                FROM LIVE.dq_metrics_aggregated
                WHERE metric_hour >= current_timestamp() - INTERVAL 1 HOUR
                GROUP BY 1
            ),
            previous_rate AS (
                SELECT table_name, AVG(drop_rate) as prev_drop_rate
                FROM LIVE.dq_metrics_aggregated
                WHERE metric_hour BETWEEN current_timestamp() - INTERVAL 25 HOURS
                                       AND current_timestamp() - INTERVAL 1 HOUR
                GROUP BY 1
            )
            SELECT c.table_name,
                   c.current_drop_rate,
                   p.prev_drop_rate,
                   c.current_drop_rate - p.prev_drop_rate as change
            FROM current_rate c
            JOIN previous_rate p ON c.table_name = p.table_name
            WHERE c.current_drop_rate - p.prev_drop_rate > 0.05
        """
    },
    {
        "name": "Quarantine Backlog Growing",
        "condition": "quarantine count > threshold",
        "severity": "P3",
        "notification": ["slack"],
        "query": """
            SELECT max_severity, COUNT(*) as count
            FROM LIVE.quarantine_orders_detailed
            WHERE quarantine_timestamp >= current_timestamp() - INTERVAL 24 HOURS
            GROUP BY 1
            HAVING COUNT(*) > 1000
        """
    }
]
7.2 Alert Implementation
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.sql import AlertOptions

def create_quality_alerts():
    """
    Create SQL alerts for data quality monitoring.
    """
    client = WorkspaceClient()

    for alert_config in QUALITY_ALERTS:
        # Create query
        query = client.queries.create(
            name=f"DQ Alert Query - {alert_config['name']}",
            query=alert_config['query'],
            data_source_id=get_warehouse_id()
        )

        # Create alert
        client.alerts.create(
            name=alert_config['name'],
            query_id=query.id,
            options=AlertOptions(
                column="count" if "count" in alert_config['query'].lower() else "drop_rate",
                op=">",
                value="0",
                muted=False
            )
        )


def send_quality_notification(alert_name, alert_data, channels):
    """
    Send quality alert notifications to specified channels.
    """
    message = format_alert_message(alert_name, alert_data)

    for channel in channels:
        if channel == "slack":
            send_slack_message(SLACK_WEBHOOK, message)
        elif channel == "pagerduty":
            trigger_pagerduty_incident(alert_name, message)
        elif channel == "email":
            send_email_alert(DQ_TEAM_EMAIL, alert_name, message)
8. Remediation Workflows
8.1 Remediation Process
┌─────────────────────────────────────────────────────────────────────────────┐
│                        REMEDIATION WORKFLOW                                  │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│   1. IDENTIFY              2. ANALYZE              3. REMEDIATE             │
│   ┌─────────────┐         ┌─────────────┐         ┌─────────────┐          │
│   │ Review      │────────▶│ Root Cause  │────────▶│ Fix Data    │          │
│   │ Quarantine  │         │ Analysis    │         │ or Source   │          │
│   └─────────────┘         └─────────────┘         └─────────────┘          │
│                                                          │                  │
│                                                          ▼                  │
│   6. MONITOR               5. VERIFY              4. REPROCESS             │
│   ┌─────────────┐         ┌─────────────┐         ┌─────────────┐          │
│   │ Track       │◀────────│ Quality     │◀────────│ Reinsert    │          │
│   │ Trends      │         │ Validation  │         │ Records     │          │
│   └─────────────┘         └─────────────┘         └─────────────┘          │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘
8.2 Automated Remediation
def auto_remediate_quarantine(table_name, remediation_rules):
    """
    Automatically remediate quarantine records based on defined rules.

    Rules can include:
    - Default value substitution
    - Format corrections
    - Lookup enrichment
    """
    quarantine_df = spark.table(f"quarantine_{table_name}")

    remediated_df = quarantine_df

    for rule in remediation_rules:
        if rule['type'] == 'default_value':
            remediated_df = remediated_df.withColumn(
                rule['column'],
                F.coalesce(F.col(rule['column']), F.lit(rule['default']))
            )

        elif rule['type'] == 'format_correction':
            remediated_df = remediated_df.withColumn(
                rule['column'],
                F.regexp_replace(F.col(rule['column']), rule['pattern'], rule['replacement'])
            )

        elif rule['type'] == 'lookup_enrichment':
            lookup_df = spark.table(rule['lookup_table'])
            remediated_df = remediated_df.join(
                lookup_df,
                rule['join_condition'],
                'left'
            )

    # Validate remediated records
    valid_records = remediated_df.filter(
        build_validation_condition(VALIDATION_RULES)
    )

    # Reinsert valid records
    valid_records.write.format("delta").mode("append").saveAsTable(f"silver_{table_name}")

    # Update quarantine status
    update_quarantine_status(quarantine_df, valid_records, "AUTO_REMEDIATED")

    return valid_records.count()


# Example remediation rules
REMEDIATION_RULES = [
    {
        "type": "default_value",
        "column": "status",
        "default": "PENDING",
        "applies_to": "missing_status"
    },
    {
        "type": "format_correction",
        "column": "phone",
        "pattern": "[^0-9+]",
        "replacement": "",
        "applies_to": "invalid_phone"
    },
    {
        "type": "lookup_enrichment",
        "column": "country_code",
        "lookup_table": "dim_countries",
        "join_condition": "country_name = lookup.name",
        "applies_to": "missing_country_code"
    }
]
8.3 Manual Remediation Workflow
def create_remediation_task(quarantine_batch_id, assignee, priority):
    """
    Create a remediation task for manual review.
    """
    batch = spark.table("quarantine_orders_detailed").filter(
        F.col("batch_id") == quarantine_batch_id
    )

    task = {
        "id": generate_task_id(),
        "batch_id": quarantine_batch_id,
        "record_count": batch.count(),
        "failure_summary": batch.groupBy("failed_rules").count().collect(),
        "assignee": assignee,
        "priority": priority,
        "status": "OPEN",
        "created_at": datetime.now(),
        "sla_due": calculate_sla_due(priority)
    }

    # Insert into remediation tracking table
    spark.createDataFrame([task]).write.mode("append").saveAsTable("dq_remediation_tasks")

    # Send notification
    notify_assignee(assignee, task)

    return task


def complete_remediation(task_id, resolution_notes):
    """
    Mark remediation task as complete and log resolution.
    """
    spark.sql(f"""
        UPDATE dq_remediation_tasks
        SET status = 'COMPLETED',
            completed_at = current_timestamp(),
            resolution_notes = '{resolution_notes}'
        WHERE id = '{task_id}'
    """)
9. Quality Gates
9.1 Pipeline Quality Gates
Quality gates prevent bad data from propagating to downstream systems:
@dlt.table(name="gold_daily_sales")
@dlt.expect_all_or_fail({
    # Gate 1: Minimum data volume
    "sufficient_data": "COUNT(*) >= 100",

    # Gate 2: No anomalous values
    "no_outliers": "MAX(amount) < AVG(amount) * 10",

    # Gate 3: Referential integrity
    "all_customers_valid": """
        COUNT(CASE WHEN customer_id NOT IN
            (SELECT customer_id FROM LIVE.dim_customers) THEN 1 END) = 0
    """,

    # Gate 4: Calculation accuracy
    "totals_balance": "ABS(SUM(line_total) - SUM(order_total)) < 0.01"
})
def gold_daily_sales():
    """
    Gold table with strict quality gates.

    Pipeline FAILS if any gate condition is not met.
    This prevents publishing invalid aggregates to dashboards.
    """
    return (
        dlt.read("silver_orders")
        .filter(F.col("order_date") == F.current_date())
        .groupBy("order_date")
        .agg(
            F.count("*").alias("order_count"),
            F.sum("amount").alias("total_sales")
        )
    )
9.2 Promotion Gates
Control data promotion between environments:
def check_promotion_gates(source_table, target_environment):
    """
    Verify data meets quality gates before environment promotion.

    Gates:
    1. Quality score above threshold
    2. No critical quarantine records
    3. Schema compatibility
    4. Volume within expected range
    """
    gates = []

    # Gate 1: Quality score
    quality_score = get_quality_score(source_table)
    gates.append({
        "name": "quality_score",
        "passed": quality_score >= 0.99,
        "value": quality_score,
        "threshold": 0.99
    })

    # Gate 2: Critical quarantine check
    critical_count = spark.table(f"quarantine_{source_table}").filter(
        F.col("max_severity") == "CRITICAL"
    ).count()
    gates.append({
        "name": "no_critical_quarantine",
        "passed": critical_count == 0,
        "value": critical_count,
        "threshold": 0
    })

    # Gate 3: Schema compatibility
    schema_compatible = check_schema_compatibility(source_table, target_environment)
    gates.append({
        "name": "schema_compatible",
        "passed": schema_compatible,
        "value": schema_compatible,
        "threshold": True
    })

    # Gate 4: Volume check
    current_volume = spark.table(source_table).count()
    expected_volume = get_expected_volume(source_table)
    volume_ratio = current_volume / expected_volume
    gates.append({
        "name": "volume_in_range",
        "passed": 0.8 <= volume_ratio <= 1.2,
        "value": volume_ratio,
        "threshold": "0.8 - 1.2"
    })

    # Overall result
    all_passed = all(g["passed"] for g in gates)

    return {
        "source_table": source_table,
        "target_environment": target_environment,
        "gates": gates,
        "all_passed": all_passed,
        "checked_at": datetime.now().isoformat()
    }
10. Advanced Validation Patterns
10.1 Statistical Validation
@dlt.table(name="silver_transactions_validated")
@dlt.expect_all({
    # Z-score based outlier detection
    "amount_not_outlier": """
        ABS(amount - (SELECT AVG(amount) FROM LIVE.silver_transactions_validated)) /
        (SELECT STDDEV(amount) FROM LIVE.silver_transactions_validated) < 3
    """,

    # Benford's Law validation (first digit distribution)
    "benford_compliant": """
        ABS(
            (SELECT COUNT(*) FROM LIVE.silver_transactions_validated
             WHERE SUBSTRING(CAST(amount AS STRING), 1, 1) = '1') * 1.0 /
            COUNT(*) - 0.301
        ) < 0.05
    """
})
def silver_transactions_validated():
    """
    Apply statistical validation rules.
    Useful for fraud detection and data integrity.
    """
    return dlt.read_stream("bronze_transactions")
10.2 Cross-Table Validation
@dlt.table(name="gold_order_summary")
@dlt.expect_all_or_fail({
    # Cross-table reconciliation
    "order_count_matches": """
        (SELECT COUNT(*) FROM LIVE.gold_order_summary) =
        (SELECT COUNT(DISTINCT order_id) FROM LIVE.silver_orders)
    """,

    # Revenue reconciliation
    "revenue_matches": """
        ABS(
            (SELECT SUM(total_revenue) FROM LIVE.gold_order_summary) -
            (SELECT SUM(amount) FROM LIVE.silver_orders WHERE status = 'COMPLETED')
        ) < 0.01
    """,

    # Customer count reconciliation
    "customer_count_valid": """
        (SELECT COUNT(DISTINCT customer_id) FROM LIVE.gold_order_summary) <=
        (SELECT COUNT(*) FROM LIVE.dim_customers)
    """
})
def gold_order_summary():
    """
    Gold summary with cross-table validation.
    Ensures aggregates are consistent with source data.
    """
    return (
        dlt.read("silver_orders")
        .groupBy("customer_id")
        .agg(
            F.count("order_id").alias("order_count"),
            F.sum("amount").alias("total_revenue")
        )
    )
10.3 Temporal Validation
@dlt.table(name="silver_events_temporal")
@dlt.expect_all({
    # Event sequence validation
    "event_sequence_valid": """
        NOT EXISTS (
            SELECT 1 FROM LIVE.silver_events_temporal e1
            JOIN LIVE.silver_events_temporal e2
            ON e1.session_id = e2.session_id
            WHERE e1.event_type = 'SESSION_END'
              AND e2.event_type = 'SESSION_START'
              AND e1.event_timestamp < e2.event_timestamp
        )
    """,

    # No duplicate timestamps
    "unique_timestamps": """
        (SELECT COUNT(*) FROM LIVE.silver_events_temporal) =
        (SELECT COUNT(DISTINCT event_id, event_timestamp) FROM LIVE.silver_events_temporal)
    """,

    # Monotonic sequence numbers
    "sequence_monotonic": """
        NOT EXISTS (
            SELECT 1 FROM LIVE.silver_events_temporal e1
            JOIN LIVE.silver_events_temporal e2
            ON e1.session_id = e2.session_id
            WHERE e1.sequence_num >= e2.sequence_num
              AND e1.event_timestamp < e2.event_timestamp
        )
    """
})
def silver_events_temporal():
    """
    Validate temporal consistency of event data.
    """
    return dlt.read_stream("bronze_events")
11. Quality Documentation
11.1 Data Contract Template
# data_contract_silver_orders.yaml
contract:
  name: silver_orders
  version: "1.0"
  owner: data-engineering-team
  description: "Cleansed and validated customer orders"

schema:
  fields:
    - name: order_id
      type: string
      nullable: false
      description: "Unique order identifier"
      pii: false

    - name: customer_id
      type: string
      nullable: false
      description: "Customer identifier (FK to dim_customers)"
      pii: false

    - name: email
      type: string
      nullable: true
      description: "Customer email address"
      pii: true

    - name: amount
      type: decimal(18,2)
      nullable: false
      description: "Order total in USD"
      pii: false

quality_rules:
  completeness:
    - field: order_id
      rule: "NOT NULL"
      threshold: 100%

    - field: customer_id
      rule: "NOT NULL"
      threshold: 100%

  validity:
    - field: amount
      rule: "amount > 0"
      threshold: 99.9%

    - field: status
      rule: "IN ('PENDING', 'COMPLETED', 'CANCELLED')"
      threshold: 100%

  freshness:
    - rule: "Data updated within 1 hour"
      threshold: 99%

sla:
  availability: 99.9%
  latency: "< 15 minutes"
  quality_score: "> 99%"

consumers:
  - name: analytics-dashboard
    contact: analytics-team@company.com

  - name: ml-recommendation-service
    contact: ml-team@company.com
11.2 Quality Rule Documentation
def generate_quality_documentation(table_name, rules):
    """
    Generate quality documentation for a table.
    """
    doc = {
        "table": table_name,
        "generated_at": datetime.now().isoformat(),
        "rules": []
    }

    for rule_name, rule_expr in rules.items():
        doc["rules"].append({
            "name": rule_name,
            "expression": rule_expr,
            "category": categorize_rule(rule_name),
            "severity": determine_severity(rule_name),
            "description": generate_description(rule_name, rule_expr)
        })

    return doc


# Generate and save documentation
for table in MONITORED_TABLES:
    doc = generate_quality_documentation(table, get_rules(table))
    save_documentation(doc, f"docs/quality/{table}.json")
12. Best Practices
12.1 Quality Rule Design
	Practice
	Description

	**Start Simple**
	Begin with basic completeness and validity checks

	**Layer Appropriately**
	Bronze: minimal, Silver: comprehensive, Gold: business rules

	**Use expect_or_drop Wisely**
	Only drop records that are truly unusable

	**Fail Fast on Critical**
	Use expect_or_fail for business-critical rules

	**Document Rules**
	Every rule should have clear documentation



12.2 Monitoring Best Practices
	Practice
	Description

	**Track Trends**
	Monitor quality over time, not just current state

	**Alert on Degradation**
	Catch quality issues before they become critical

	**Review Quarantine Daily**
	Don't let quarantine tables grow unbounded

	**Measure Remediation**
	Track how quickly issues are resolved

	**Report to Stakeholders**
	Share quality metrics with data consumers



12.3 Remediation Best Practices
	Practice
	Description

	**Automate Where Possible**
	Implement auto-remediation for common issues

	**Fix at Source**
	Address root causes, not just symptoms

	**Track Patterns**
	Identify recurring issues for permanent fixes

	**Define SLAs**
	Set clear timelines for remediation by severity

	**Learn and Improve**
	Use quality issues to improve validation rules
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