[image:]

Data Engineering Guide

Delta Live Tables Data Quality Patterns

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	1.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Data Engineering Team

	Department
	Mastech Digital - Data & Analytics

Table of Contents
[Executive Summary](#1-executive-summary)
[Data Quality Framework](#2-data-quality-framework)
[Expectation Patterns](#3-expectation-patterns)
[Quarantine Architecture](#4-quarantine-architecture)
[Data Quality Metrics](#5-data-quality-metrics)
[Quality Dashboards](#6-quality-dashboards)
[Alerting and Notification](#7-alerting-and-notification)
[Remediation Workflows](#8-remediation-workflows)
[Quality Gates](#9-quality-gates)
[Advanced Validation Patterns](#10-advanced-validation-patterns)
[Quality Documentation](#11-quality-documentation)
[Best Practices](#12-best-practices)
1. Executive Summary
1.1 Purpose and Scope
Data quality is the foundation of trustworthy analytics and reliable business decisions. This guide provides comprehensive patterns for implementing data quality controls in Delta Live Tables pipelines, covering validation rules, quarantine strategies, monitoring dashboards, and remediation workflows.
1.2 Why Data Quality Matters
Poor data quality has measurable business impact:
	Impact Area
	Consequence
	Industry Average Cost

	Decision Making
	Wrong insights lead to bad decisions
	15-25% revenue impact

	Operational Efficiency
	Manual data fixes consume resources
	20-30% of analyst time

	Customer Experience
	Incorrect data affects service
	Customer churn increase

	Compliance
	Regulatory violations
	Fines and penalties

	Trust
	Loss of confidence in data
	Reduced data adoption

1.3 DLT Quality Capabilities
Delta Live Tables provides native data quality features that eliminate the need for separate validation frameworks:
	Capability
	Traditional Approach
	DLT Approach

	Rule Definition
	External rules engine
	Inline expectations

	Validation Execution
	Separate validation job
	Built into pipeline

	Metrics Collection
	Custom logging
	Automatic event log

	Failed Record Handling
	Complex branching
	expect_or_drop

	Quality Dashboards
	Custom development
	Query event log

1.4 Data Quality Dimensions
This guide addresses the six core dimensions of data quality:
	Dimension
	Definition
	DLT Implementation

	Completeness
	Required data is present
	Null checks, required field validation

	Accuracy
	Data reflects reality
	Range checks, business rule validation

	Consistency
	Data agrees across sources
	Cross-table validation, referential checks

	Timeliness
	Data is current
	Freshness checks, latency monitoring

	Validity
	Data conforms to formats
	Regex patterns, type validation

	Uniqueness
	No unwanted duplicates
	Deduplication, uniqueness constraints

2. Data Quality Framework
2.1 Layered Quality Strategy
Implement quality controls at each layer of the medallion architecture with increasing strictness:
┌───┐
│ LAYERED DATA QUALITY STRATEGY │
├───┤
│ │
│ BRONZE LAYER │
│ ┌───┐ │
│ │ Minimal Validation - Preserve raw data for debugging │ │
│ │ • Schema validation (can we parse the data?) │ │
│ │ • Critical nulls only (primary keys) │ │
│ │ • Action: Log all, drop none │ │
│ └───┘ │
│ ▼ │
│ SILVER LAYER │
│ ┌───┐ │
│ │ Comprehensive Validation - Ensure data quality │ │
│ │ • Completeness (all required fields) │ │
│ │ • Validity (formats, types, ranges) │ │
│ │ • Uniqueness (deduplication) │ │
│ │ • Action: Log violations, drop invalid records │ │
│ └───┘ │
│ ▼ │
│ GOLD LAYER │
│ ┌───┐ │
│ │ Business Rule Validation - Ensure business integrity │ │
│ │ • Consistency (cross-table relationships) │ │
│ │ • Business rules (domain-specific logic) │ │
│ │ • Aggregation integrity (totals match) │ │
│ │ • Action: Fail on critical violations │ │
│ └───┘ │
│ │
└───┘
2.2 Quality Rule Categories
Organize expectations into logical categories for maintainability:
import dlt
from pyspark.sql import functions as F

Define quality rules by category for reusability
QUALITY_RULES = {
 # Completeness rules - ensure required data is present
 "completeness": {
 "has_primary_key": "id IS NOT NULL",
 "has_timestamp": "event_timestamp IS NOT NULL",
 "has_required_fields": "customer_id IS NOT NULL AND product_id IS NOT NULL"
 },

 # Validity rules - ensure data format is correct
 "validity": {
 "valid_email": "email RLIKE '^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$'",
 "valid_phone": "phone RLIKE '^\\+?[1-9]\\d{1,14}$'",
 "valid_date": "order_date <= current_date()",
 "valid_status": "status IN ('ACTIVE', 'INACTIVE', 'PENDING', 'CANCELLED')"
 },

 # Accuracy rules - ensure data values are reasonable
 "accuracy": {
 "positive_amount": "amount > 0",
 "reasonable_quantity": "quantity BETWEEN 1 AND 10000",
 "valid_percentage": "discount_rate BETWEEN 0 AND 100",
 "price_range": "unit_price BETWEEN 0.01 AND 1000000"
 },

 # Consistency rules - ensure cross-field logic
 "consistency": {
 "dates_in_order": "end_date >= start_date",
 "total_matches": "ABS(subtotal + tax - total) < 0.01",
 "status_date_consistent": "NOT (status = 'COMPLETED' AND completed_date IS NULL)"
 },

 # Timeliness rules - ensure data freshness
 "timeliness": {
 "recent_data": "event_timestamp >= current_timestamp() - INTERVAL 24 HOURS",
 "not_future": "created_at <= current_timestamp()"
 }
}
2.3 Expectation Application Pattern
Apply categorized rules systematically to tables:
def apply_quality_rules(categories):
 """
 Create a combined expectation dictionary from specified categories.
 This allows consistent rule application across similar tables.
 """
 combined_rules = {}
 for category in categories:
 if category in QUALITY_RULES:
 combined_rules.update(QUALITY_RULES[category])
 return combined_rules

@dlt.table(name="silver_orders")
@dlt.expect_all_or_drop(apply_quality_rules(["completeness", "validity", "accuracy"]))
def silver_orders():
 """
 Apply completeness, validity, and accuracy rules to orders.
 Records failing any rule are dropped and tracked in event log.
 """
 return dlt.read_stream("bronze_orders")
3. Expectation Patterns
3.1 Completeness Expectations
Completeness ensures all required data is present. These rules should be applied at the Silver layer.
@dlt.table(name="silver_customers")
@dlt.expect_all({
 # Required fields for customer identification
 "customer_id_present": "customer_id IS NOT NULL",
 "email_present": "email IS NOT NULL",

 # Required fields for communication
 "contact_info_present": "phone IS NOT NULL OR email IS NOT NULL",

 # Required fields for business operations
 "address_complete": """
 address_line1 IS NOT NULL AND
 city IS NOT NULL AND
 country IS NOT NULL
 """,

 # Conditional completeness
 "business_fields_complete": """
 customer_type != 'BUSINESS' OR
 (company_name IS NOT NULL AND tax_id IS NOT NULL)
 """
})
def silver_customers():
 """
 Validate customer data completeness.

 Completeness rules ensure:
 1. Primary identifiers are always present
 2. At least one contact method exists
 3. Address is complete for shipping
 4. Business customers have required B2B fields
 """
 return dlt.read_stream("bronze_customers")
3.2 Validity Expectations
Validity ensures data conforms to expected formats and ranges:
@dlt.table(name="silver_transactions")
@dlt.expect_all_or_drop({
 # Format validation using regex
 "valid_transaction_id": "transaction_id RLIKE '^TXN-[0-9]{10}$'",
 "valid_currency_code": "currency RLIKE '^[A-Z]{3}$'",
 "valid_card_last_four": "card_last_four RLIKE '^[0-9]{4}$'",

 # Type validation
 "numeric_amount": "CAST(amount AS DECIMAL(18,2)) IS NOT NULL",

 # Range validation
 "valid_amount_range": "amount BETWEEN 0.01 AND 1000000",

 # Enumeration validation
 "valid_payment_method": "payment_method IN ('CREDIT', 'DEBIT', 'ACH', 'WIRE', 'CRYPTO')",
 "valid_transaction_type": "transaction_type IN ('PURCHASE', 'REFUND', 'CHARGEBACK', 'ADJUSTMENT')",

 # Temporal validation
 "valid_transaction_date": "transaction_date <= current_date()",
 "not_too_old": "transaction_date >= current_date() - INTERVAL 2 YEARS"
})
def silver_transactions():
 """
 Validate transaction data format and ranges.

 Validity rules ensure:
 1. IDs follow expected patterns
 2. Codes match ISO standards
 3. Amounts are within reasonable bounds
 4. Enumerations contain only valid values
 5. Dates are logically valid
 """
 return dlt.read_stream("bronze_transactions")
3.3 Accuracy Expectations
Accuracy ensures data values correctly represent reality:
@dlt.table(name="silver_orders")
@dlt.expect_all({
 # Mathematical accuracy
 "line_total_accurate": "ABS(quantity * unit_price - line_total) < 0.01",
 "order_total_accurate": "ABS(subtotal + tax_amount + shipping - total_amount) < 0.01",
 "discount_accurate": "discount_amount <= subtotal",

 # Business logic accuracy
 "shipping_for_physical": "product_type != 'PHYSICAL' OR shipping_amount > 0",
 "no_shipping_for_digital": "product_type != 'DIGITAL' OR shipping_amount = 0",

 # Referential accuracy (values exist in lookup)
 "valid_product": "product_id IN (SELECT product_id FROM LIVE.dim_products)",
 "valid_customer": "customer_id IN (SELECT customer_id FROM LIVE.dim_customers)"
})
def silver_orders():
 """
 Validate order calculation accuracy.

 Accuracy rules ensure:
 1. Mathematical calculations are correct
 2. Business logic is properly applied
 3. Foreign key relationships are valid
 """
 return dlt.read_stream("bronze_orders")
3.4 Consistency Expectations
Consistency ensures data agrees within and across records:
@dlt.table(name="silver_events")
@dlt.expect_all({
 # Temporal consistency
 "event_after_user_creation": """
 event_timestamp >= (
 SELECT created_at FROM LIVE.dim_users u
 WHERE u.user_id = event_user_id
)
 """,

 # Logical consistency
 "session_event_order": """
 event_type != 'SESSION_END' OR
 event_timestamp > (
 SELECT MAX(event_timestamp) FROM LIVE.silver_events e
 WHERE e.session_id = session_id AND e.event_type = 'SESSION_START'
)
 """,

 # Cross-field consistency
 "status_timestamp_match": """
 (status = 'COMPLETED' AND completed_at IS NOT NULL) OR
 (status != 'COMPLETED' AND completed_at IS NULL)
 """,

 # Value consistency
 "currency_consistent": """
 currency = (
 SELECT default_currency FROM LIVE.dim_accounts a
 WHERE a.account_id = account_id
)
 """
})
def silver_events():
 """
 Validate event data consistency.

 Consistency rules ensure:
 1. Events occur after related entity creation
 2. Event sequences are logical
 3. Status fields match related timestamps
 4. Values match related dimension attributes
 """
 return dlt.read_stream("bronze_events")
3.5 Uniqueness Expectations
Uniqueness ensures no unwanted duplicate records:
@dlt.table(name="silver_customers_unique")
def silver_customers_unique():
 """
 Ensure customer uniqueness using deduplication.

 Strategy:
 1. Identify duplicates by business key
 2. Keep most recent record
 3. Log duplicate counts for monitoring
 """
 df = dlt.read_stream("bronze_customers")

 # Window for selecting most recent record
 window = Window.partitionBy("email").orderBy(F.desc("updated_at"))

 return (
 df
 .withColumn("row_num", F.row_number().over(window))
 .filter(F.col("row_num") == 1)
 .drop("row_num")
)

Alternative: Use SQL-style uniqueness check
@dlt.table(name="silver_orders_unique")
@dlt.expect("unique_order_id", """
 order_id NOT IN (
 SELECT order_id FROM LIVE.silver_orders_unique
 GROUP BY order_id
 HAVING COUNT(*) > 1
)
""")
def silver_orders_unique():
 """
 Validate order uniqueness via expectation.
 Note: This approach is more expensive - prefer deduplication for large tables.
 """
 return dlt.read_stream("bronze_orders").dropDuplicates(["order_id"])
4. Quarantine Architecture
4.1 Quarantine Design Principles
A quarantine system captures invalid records for analysis and remediation without blocking the pipeline:
┌───┐
│ QUARANTINE ARCHITECTURE │
├───┤
│ │
│ Source Data │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ VALIDATION LAYER │ │
│ │ │ │
│ │ ┌─────────────┐ Pass ┌─────────────┐ │ │
│ │ │ Quality │ ─────────▶ │ Clean │ ──▶ Downstream │ │
│ │ │ Rules │ │ Table │ │ │
│ │ └─────────────┘ └─────────────┘ │ │
│ │ │ │ │
│ │ │ Fail │ │
│ │ ▼ │ │
│ │ ┌─────────────┐ ┌─────────────┐ │ │
│ │ │ Quarantine │ ─────────▶ │ Analysis │ ──▶ Remediation │ │
│ │ │ Table │ │ Dashboard │ │ │
│ │ └─────────────┘ └─────────────┘ │ │
│ │ │ │
│ └───┘ │
│ │
└───┘
4.2 Basic Quarantine Pattern
import dlt
from pyspark.sql import functions as F

Define validation rules
VALIDATION_RULES = {
 "has_order_id": "order_id IS NOT NULL",
 "has_customer_id": "customer_id IS NOT NULL",
 "valid_amount": "amount > 0",
 "valid_status": "status IN ('PENDING', 'COMPLETED', 'CANCELLED')"
}

@dlt.table(name="silver_orders_clean")
@dlt.expect_all_or_drop(VALIDATION_RULES)
def silver_orders_clean():
 """
 Clean orders table - contains only valid records.
 Invalid records are automatically dropped and logged.
 """
 return dlt.read_stream("bronze_orders")

@dlt.table(name="quarantine_orders")
def quarantine_orders():
 """
 Quarantine table - captures all records that fail validation.

 Includes:
 - Original record data
 - Which rule(s) failed
 - When the record was quarantined
 - Source file for tracing
 """
 df = dlt.read_stream("bronze_orders")

 # Build validation failure conditions
 failure_conditions = []
 for rule_name, rule_expr in VALIDATION_RULES.items():
 failure_conditions.append(
 F.when(~F.expr(rule_expr), rule_name)
)

 # Identify records that fail ANY validation
 combined_condition = F.expr(" OR ".join([
 f"NOT ({rule})" for rule in VALIDATION_RULES.values()
]))

 return (
 df
 .filter(combined_condition)
 .withColumn("failed_rules",
 F.array_compact(F.array(*failure_conditions))
)
 .withColumn("quarantine_timestamp", F.current_timestamp())
 .withColumn("quarantine_reason",
 F.concat_ws(", ", F.col("failed_rules"))
)
)
4.3 Advanced Quarantine with Categorization
@dlt.table(name="quarantine_orders_detailed")
def quarantine_orders_detailed():
 """
 Advanced quarantine with failure categorization and severity.

 Categories:
 - CRITICAL: Missing primary identifiers
 - HIGH: Business rule violations
 - MEDIUM: Format/validation issues
 - LOW: Data quality warnings
 """
 df = dlt.read_stream("bronze_orders")

 # Define rules with categories and severity
 rules = [
 ("order_id IS NULL", "missing_order_id", "CRITICAL", "completeness"),
 ("customer_id IS NULL", "missing_customer_id", "CRITICAL", "completeness"),
 ("amount <= 0", "invalid_amount", "HIGH", "accuracy"),
 ("status NOT IN ('PENDING', 'COMPLETED', 'CANCELLED')", "invalid_status", "MEDIUM", "validity"),
 ("order_date > current_date()", "future_date", "MEDIUM", "validity"),
 ("email NOT RLIKE '^[^@]+@[^@]+$'", "invalid_email", "LOW", "validity")
]

 # Build failure detection
 failed_records = df.filter(
 F.expr(" OR ".join([rule[0] for rule in rules]))
)

 # Add failure details
 for condition, name, severity, category in rules:
 failed_records = failed_records.withColumn(
 f"failed_{name}",
 F.when(F.expr(condition), True).otherwise(False)
)

 # Aggregate failure information
 failure_columns = [f"failed_{rule[1]}" for rule in rules]

 return (
 failed_records
 .withColumn("failed_rules",
 F.array(*[
 F.when(F.col(col), F.lit(col.replace("failed_", "")))
 for col in failure_columns
])
)
 .withColumn("failed_rules", F.array_compact(F.col("failed_rules")))
 .withColumn("failure_count", F.size(F.col("failed_rules")))
 .withColumn("max_severity",
 F.when(F.col("failed_missing_order_id") | F.col("failed_missing_customer_id"), "CRITICAL")
 .when(F.col("failed_invalid_amount"), "HIGH")
 .when(F.col("failed_invalid_status") | F.col("failed_future_date"), "MEDIUM")
 .otherwise("LOW")
)
 .withColumn("quarantine_timestamp", F.current_timestamp())
 .withColumn("source_file", F.input_file_name())
 .drop(*failure_columns)
)
4.4 Quarantine Lifecycle Management
@dlt.table(name="quarantine_summary")
def quarantine_summary():
 """
 Daily summary of quarantine activity for monitoring.
 """
 return (
 spark.table("LIVE.quarantine_orders_detailed")
 .groupBy(
 F.date_trunc("day", "quarantine_timestamp").alias("quarantine_date"),
 "max_severity"
)
 .agg(
 F.count("*").alias("record_count"),
 F.collect_set("failed_rules").alias("unique_failures")
)
)

def archive_old_quarantine_records(retention_days=30):
 """
 Archive quarantine records older than retention period.

 Process:
 1. Move old records to archive table
 2. Delete from active quarantine
 3. Log archive operation
 """
 archive_date = f"current_date() - INTERVAL {retention_days} DAYS"

 # Archive old records
 spark.sql(f"""
 INSERT INTO archive.quarantine_orders_archive
 SELECT *, current_timestamp() as archived_at
 FROM production.quarantine_orders_detailed
 WHERE quarantine_timestamp < {archive_date}
 """)

 # Remove archived records
 spark.sql(f"""
 DELETE FROM production.quarantine_orders_detailed
 WHERE quarantine_timestamp < {archive_date}
 """)
5. Data Quality Metrics
5.1 Core Quality Metrics
Track these essential metrics for every pipeline:
	Metric
	Formula
	Target

	Pass Rate
	passed_records / total_records
	> 99%

	Drop Rate
	dropped_records / total_records
	< 1%

	Failure Rate by Rule
	rule_failures / total_records
	Varies

	Quarantine Rate
	quarantined / total_records
	< 5%

	Remediation Rate
	remediated / quarantined
	> 90%

5.2 Metrics Collection
@dlt.table(name="dq_metrics_raw")
def dq_metrics_raw():
 """
 Extract raw quality metrics from DLT event log.

 The event log automatically captures:
 - Records processed
 - Expectations evaluated
 - Pass/fail counts per expectation
 - Dropped record counts
 """
 return spark.sql("""
 SELECT
 timestamp,
 details:flow_progress:table_name as table_name,
 details:flow_progress:metrics:num_output_rows as output_rows,
 details:flow_progress:data_quality:expectations as expectations,
 details:flow_progress:data_quality:dropped_records as dropped_records
 FROM event_log(TABLE(LIVE.silver_orders_clean))
 WHERE event_type = 'flow_progress'
 AND details:flow_progress:data_quality IS NOT NULL
 """)

@dlt.table(name="dq_metrics_aggregated")
def dq_metrics_aggregated():
 """
 Aggregate quality metrics for reporting.
 """
 return (
 dlt.read("dq_metrics_raw")
 .groupBy(
 F.date_trunc("hour", "timestamp").alias("metric_hour"),
 "table_name"
)
 .agg(
 F.sum("output_rows").alias("total_rows"),
 F.sum("dropped_records").alias("total_dropped"),
 F.count("*").alias("batch_count")
)
 .withColumn("drop_rate",
 F.col("total_dropped") / (F.col("total_rows") + F.col("total_dropped"))
)
 .withColumn("pass_rate",
 F.lit(1) - F.col("drop_rate")
)
)
5.3 Trend Analysis
-- Quality trend over time
SELECT
 date_trunc('day', metric_hour) as metric_date,
 table_name,
 SUM(total_rows) as total_processed,
 SUM(total_dropped) as total_dropped,
 ROUND(SUM(total_dropped) / SUM(total_rows + total_dropped) * 100, 2) as drop_rate_pct,
 ROUND(AVG(pass_rate) * 100, 2) as avg_pass_rate_pct
FROM LIVE.dq_metrics_aggregated
WHERE metric_hour >= current_timestamp() - INTERVAL 30 DAYS
GROUP BY 1, 2
ORDER BY 1 DESC, 2;

-- Quality degradation detection
WITH daily_metrics AS (
 SELECT
 date_trunc('day', metric_hour) as metric_date,
 table_name,
 AVG(drop_rate) as avg_drop_rate
 FROM LIVE.dq_metrics_aggregated
 GROUP BY 1, 2
),
metrics_with_change AS (
 SELECT
 *,
 LAG(avg_drop_rate) OVER (PARTITION BY table_name ORDER BY metric_date) as prev_drop_rate,
 avg_drop_rate - LAG(avg_drop_rate) OVER (PARTITION BY table_name ORDER BY metric_date) as drop_rate_change
 FROM daily_metrics
)
SELECT *
FROM metrics_with_change
WHERE drop_rate_change > 0.05 -- Alert if drop rate increased by 5%
ORDER BY metric_date DESC;
6. Quality Dashboards
6.1 Executive Dashboard Queries
-- Overall Data Quality Score
SELECT
 'Data Quality Score' as metric,
 ROUND(AVG(pass_rate) * 100, 1) as score,
 CASE
 WHEN AVG(pass_rate) >= 0.99 THEN 'Excellent'
 WHEN AVG(pass_rate) >= 0.95 THEN 'Good'
 WHEN AVG(pass_rate) >= 0.90 THEN 'Needs Attention'
 ELSE 'Critical'
 END as status
FROM LIVE.dq_metrics_aggregated
WHERE metric_hour >= current_timestamp() - INTERVAL 24 HOURS;

-- Quality by Data Domain
SELECT
 CASE
 WHEN table_name LIKE '%customer%' THEN 'Customer'
 WHEN table_name LIKE '%order%' THEN 'Orders'
 WHEN table_name LIKE '%product%' THEN 'Products'
 WHEN table_name LIKE '%transaction%' THEN 'Transactions'
 ELSE 'Other'
 END as data_domain,
 COUNT(DISTINCT table_name) as table_count,
 SUM(total_rows) as total_records,
 ROUND(AVG(pass_rate) * 100, 2) as avg_pass_rate
FROM LIVE.dq_metrics_aggregated
WHERE metric_hour >= current_timestamp() - INTERVAL 24 HOURS
GROUP BY 1
ORDER BY 4;

-- Top Quality Issues
SELECT
 table_name,
 failed_rule,
 COUNT(*) as failure_count,
 ROUND(COUNT(*) * 100.0 / SUM(COUNT(*)) OVER(), 2) as pct_of_all_failures
FROM (
 SELECT
 table_name,
 explode(failed_rules) as failed_rule
 FROM LIVE.quarantine_orders_detailed
 WHERE quarantine_timestamp >= current_timestamp() - INTERVAL 24 HOURS
)
GROUP BY 1, 2
ORDER BY 3 DESC
LIMIT 10;
6.2 Operational Dashboard Queries
-- Real-time Quality Status
SELECT
 table_name,
 MAX(timestamp) as last_update,
 SUM(CASE WHEN timestamp >= current_timestamp() - INTERVAL 1 HOUR THEN output_rows ELSE 0 END) as rows_last_hour,
 SUM(CASE WHEN timestamp >= current_timestamp() - INTERVAL 1 HOUR THEN dropped_records ELSE 0 END) as dropped_last_hour,
 CASE
 WHEN MAX(timestamp) < current_timestamp() - INTERVAL 2 HOURS THEN 'STALE'
 WHEN SUM(CASE WHEN timestamp >= current_timestamp() - INTERVAL 1 HOUR THEN dropped_records ELSE 0 END) /
 NULLIF(SUM(CASE WHEN timestamp >= current_timestamp() - INTERVAL 1 HOUR THEN output_rows + dropped_records ELSE 0 END), 0) > 0.05
 THEN 'DEGRADED'
 ELSE 'HEALTHY'
 END as health_status
FROM LIVE.dq_metrics_raw
GROUP BY 1;

-- Quarantine Backlog
SELECT
 max_severity,
 COUNT(*) as record_count,
 MIN(quarantine_timestamp) as oldest_record,
 DATEDIFF(current_timestamp(), MIN(quarantine_timestamp)) as days_oldest
FROM LIVE.quarantine_orders_detailed
GROUP BY 1
ORDER BY
 CASE max_severity
 WHEN 'CRITICAL' THEN 1
 WHEN 'HIGH' THEN 2
 WHEN 'MEDIUM' THEN 3
 ELSE 4
 END;
7. Alerting and Notification
7.1 Alert Definitions
Define quality alerts
QUALITY_ALERTS = [
 {
 "name": "Critical Quality Failure",
 "condition": "drop_rate > 0.10", # More than 10% dropped
 "severity": "P1",
 "notification": ["pagerduty", "slack"],
 "query": """
 SELECT table_name, drop_rate
 FROM LIVE.dq_metrics_aggregated
 WHERE metric_hour >= current_timestamp() - INTERVAL 1 HOUR
 AND drop_rate > 0.10
 """
 },
 {
 "name": "Quality Degradation",
 "condition": "drop_rate increased by 5%",
 "severity": "P2",
 "notification": ["slack", "email"],
 "query": """
 WITH current_rate AS (
 SELECT table_name, AVG(drop_rate) as current_drop_rate
 FROM LIVE.dq_metrics_aggregated
 WHERE metric_hour >= current_timestamp() - INTERVAL 1 HOUR
 GROUP BY 1
),
 previous_rate AS (
 SELECT table_name, AVG(drop_rate) as prev_drop_rate
 FROM LIVE.dq_metrics_aggregated
 WHERE metric_hour BETWEEN current_timestamp() - INTERVAL 25 HOURS
 AND current_timestamp() - INTERVAL 1 HOUR
 GROUP BY 1
)
 SELECT c.table_name,
 c.current_drop_rate,
 p.prev_drop_rate,
 c.current_drop_rate - p.prev_drop_rate as change
 FROM current_rate c
 JOIN previous_rate p ON c.table_name = p.table_name
 WHERE c.current_drop_rate - p.prev_drop_rate > 0.05
 """
 },
 {
 "name": "Quarantine Backlog Growing",
 "condition": "quarantine count > threshold",
 "severity": "P3",
 "notification": ["slack"],
 "query": """
 SELECT max_severity, COUNT(*) as count
 FROM LIVE.quarantine_orders_detailed
 WHERE quarantine_timestamp >= current_timestamp() - INTERVAL 24 HOURS
 GROUP BY 1
 HAVING COUNT(*) > 1000
 """
 }
]
7.2 Alert Implementation
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.sql import AlertOptions

def create_quality_alerts():
 """
 Create SQL alerts for data quality monitoring.
 """
 client = WorkspaceClient()

 for alert_config in QUALITY_ALERTS:
 # Create query
 query = client.queries.create(
 name=f"DQ Alert Query - {alert_config['name']}",
 query=alert_config['query'],
 data_source_id=get_warehouse_id()
)

 # Create alert
 client.alerts.create(
 name=alert_config['name'],
 query_id=query.id,
 options=AlertOptions(
 column="count" if "count" in alert_config['query'].lower() else "drop_rate",
 op=">",
 value="0",
 muted=False
)
)

def send_quality_notification(alert_name, alert_data, channels):
 """
 Send quality alert notifications to specified channels.
 """
 message = format_alert_message(alert_name, alert_data)

 for channel in channels:
 if channel == "slack":
 send_slack_message(SLACK_WEBHOOK, message)
 elif channel == "pagerduty":
 trigger_pagerduty_incident(alert_name, message)
 elif channel == "email":
 send_email_alert(DQ_TEAM_EMAIL, alert_name, message)
8. Remediation Workflows
8.1 Remediation Process
┌───┐
│ REMEDIATION WORKFLOW │
├───┤
│ │
│ 1. IDENTIFY 2. ANALYZE 3. REMEDIATE │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Review │────────▶│ Root Cause │────────▶│ Fix Data │ │
│ │ Quarantine │ │ Analysis │ │ or Source │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ │ │
│ ▼ │
│ 6. MONITOR 5. VERIFY 4. REPROCESS │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Track │◀────────│ Quality │◀────────│ Reinsert │ │
│ │ Trends │ │ Validation │ │ Records │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ │
└───┘
8.2 Automated Remediation
def auto_remediate_quarantine(table_name, remediation_rules):
 """
 Automatically remediate quarantine records based on defined rules.

 Rules can include:
 - Default value substitution
 - Format corrections
 - Lookup enrichment
 """
 quarantine_df = spark.table(f"quarantine_{table_name}")

 remediated_df = quarantine_df

 for rule in remediation_rules:
 if rule['type'] == 'default_value':
 remediated_df = remediated_df.withColumn(
 rule['column'],
 F.coalesce(F.col(rule['column']), F.lit(rule['default']))
)

 elif rule['type'] == 'format_correction':
 remediated_df = remediated_df.withColumn(
 rule['column'],
 F.regexp_replace(F.col(rule['column']), rule['pattern'], rule['replacement'])
)

 elif rule['type'] == 'lookup_enrichment':
 lookup_df = spark.table(rule['lookup_table'])
 remediated_df = remediated_df.join(
 lookup_df,
 rule['join_condition'],
 'left'
)

 # Validate remediated records
 valid_records = remediated_df.filter(
 build_validation_condition(VALIDATION_RULES)
)

 # Reinsert valid records
 valid_records.write.format("delta").mode("append").saveAsTable(f"silver_{table_name}")

 # Update quarantine status
 update_quarantine_status(quarantine_df, valid_records, "AUTO_REMEDIATED")

 return valid_records.count()

Example remediation rules
REMEDIATION_RULES = [
 {
 "type": "default_value",
 "column": "status",
 "default": "PENDING",
 "applies_to": "missing_status"
 },
 {
 "type": "format_correction",
 "column": "phone",
 "pattern": "[^0-9+]",
 "replacement": "",
 "applies_to": "invalid_phone"
 },
 {
 "type": "lookup_enrichment",
 "column": "country_code",
 "lookup_table": "dim_countries",
 "join_condition": "country_name = lookup.name",
 "applies_to": "missing_country_code"
 }
]
8.3 Manual Remediation Workflow
def create_remediation_task(quarantine_batch_id, assignee, priority):
 """
 Create a remediation task for manual review.
 """
 batch = spark.table("quarantine_orders_detailed").filter(
 F.col("batch_id") == quarantine_batch_id
)

 task = {
 "id": generate_task_id(),
 "batch_id": quarantine_batch_id,
 "record_count": batch.count(),
 "failure_summary": batch.groupBy("failed_rules").count().collect(),
 "assignee": assignee,
 "priority": priority,
 "status": "OPEN",
 "created_at": datetime.now(),
 "sla_due": calculate_sla_due(priority)
 }

 # Insert into remediation tracking table
 spark.createDataFrame([task]).write.mode("append").saveAsTable("dq_remediation_tasks")

 # Send notification
 notify_assignee(assignee, task)

 return task

def complete_remediation(task_id, resolution_notes):
 """
 Mark remediation task as complete and log resolution.
 """
 spark.sql(f"""
 UPDATE dq_remediation_tasks
 SET status = 'COMPLETED',
 completed_at = current_timestamp(),
 resolution_notes = '{resolution_notes}'
 WHERE id = '{task_id}'
 """)
9. Quality Gates
9.1 Pipeline Quality Gates
Quality gates prevent bad data from propagating to downstream systems:
@dlt.table(name="gold_daily_sales")
@dlt.expect_all_or_fail({
 # Gate 1: Minimum data volume
 "sufficient_data": "COUNT(*) >= 100",

 # Gate 2: No anomalous values
 "no_outliers": "MAX(amount) < AVG(amount) * 10",

 # Gate 3: Referential integrity
 "all_customers_valid": """
 COUNT(CASE WHEN customer_id NOT IN
 (SELECT customer_id FROM LIVE.dim_customers) THEN 1 END) = 0
 """,

 # Gate 4: Calculation accuracy
 "totals_balance": "ABS(SUM(line_total) - SUM(order_total)) < 0.01"
})
def gold_daily_sales():
 """
 Gold table with strict quality gates.

 Pipeline FAILS if any gate condition is not met.
 This prevents publishing invalid aggregates to dashboards.
 """
 return (
 dlt.read("silver_orders")
 .filter(F.col("order_date") == F.current_date())
 .groupBy("order_date")
 .agg(
 F.count("*").alias("order_count"),
 F.sum("amount").alias("total_sales")
)
)
9.2 Promotion Gates
Control data promotion between environments:
def check_promotion_gates(source_table, target_environment):
 """
 Verify data meets quality gates before environment promotion.

 Gates:
 1. Quality score above threshold
 2. No critical quarantine records
 3. Schema compatibility
 4. Volume within expected range
 """
 gates = []

 # Gate 1: Quality score
 quality_score = get_quality_score(source_table)
 gates.append({
 "name": "quality_score",
 "passed": quality_score >= 0.99,
 "value": quality_score,
 "threshold": 0.99
 })

 # Gate 2: Critical quarantine check
 critical_count = spark.table(f"quarantine_{source_table}").filter(
 F.col("max_severity") == "CRITICAL"
).count()
 gates.append({
 "name": "no_critical_quarantine",
 "passed": critical_count == 0,
 "value": critical_count,
 "threshold": 0
 })

 # Gate 3: Schema compatibility
 schema_compatible = check_schema_compatibility(source_table, target_environment)
 gates.append({
 "name": "schema_compatible",
 "passed": schema_compatible,
 "value": schema_compatible,
 "threshold": True
 })

 # Gate 4: Volume check
 current_volume = spark.table(source_table).count()
 expected_volume = get_expected_volume(source_table)
 volume_ratio = current_volume / expected_volume
 gates.append({
 "name": "volume_in_range",
 "passed": 0.8 <= volume_ratio <= 1.2,
 "value": volume_ratio,
 "threshold": "0.8 - 1.2"
 })

 # Overall result
 all_passed = all(g["passed"] for g in gates)

 return {
 "source_table": source_table,
 "target_environment": target_environment,
 "gates": gates,
 "all_passed": all_passed,
 "checked_at": datetime.now().isoformat()
 }
10. Advanced Validation Patterns
10.1 Statistical Validation
@dlt.table(name="silver_transactions_validated")
@dlt.expect_all({
 # Z-score based outlier detection
 "amount_not_outlier": """
 ABS(amount - (SELECT AVG(amount) FROM LIVE.silver_transactions_validated)) /
 (SELECT STDDEV(amount) FROM LIVE.silver_transactions_validated) < 3
 """,

 # Benford's Law validation (first digit distribution)
 "benford_compliant": """
 ABS(
 (SELECT COUNT(*) FROM LIVE.silver_transactions_validated
 WHERE SUBSTRING(CAST(amount AS STRING), 1, 1) = '1') * 1.0 /
 COUNT(*) - 0.301
) < 0.05
 """
})
def silver_transactions_validated():
 """
 Apply statistical validation rules.
 Useful for fraud detection and data integrity.
 """
 return dlt.read_stream("bronze_transactions")
10.2 Cross-Table Validation
@dlt.table(name="gold_order_summary")
@dlt.expect_all_or_fail({
 # Cross-table reconciliation
 "order_count_matches": """
 (SELECT COUNT(*) FROM LIVE.gold_order_summary) =
 (SELECT COUNT(DISTINCT order_id) FROM LIVE.silver_orders)
 """,

 # Revenue reconciliation
 "revenue_matches": """
 ABS(
 (SELECT SUM(total_revenue) FROM LIVE.gold_order_summary) -
 (SELECT SUM(amount) FROM LIVE.silver_orders WHERE status = 'COMPLETED')
) < 0.01
 """,

 # Customer count reconciliation
 "customer_count_valid": """
 (SELECT COUNT(DISTINCT customer_id) FROM LIVE.gold_order_summary) <=
 (SELECT COUNT(*) FROM LIVE.dim_customers)
 """
})
def gold_order_summary():
 """
 Gold summary with cross-table validation.
 Ensures aggregates are consistent with source data.
 """
 return (
 dlt.read("silver_orders")
 .groupBy("customer_id")
 .agg(
 F.count("order_id").alias("order_count"),
 F.sum("amount").alias("total_revenue")
)
)
10.3 Temporal Validation
@dlt.table(name="silver_events_temporal")
@dlt.expect_all({
 # Event sequence validation
 "event_sequence_valid": """
 NOT EXISTS (
 SELECT 1 FROM LIVE.silver_events_temporal e1
 JOIN LIVE.silver_events_temporal e2
 ON e1.session_id = e2.session_id
 WHERE e1.event_type = 'SESSION_END'
 AND e2.event_type = 'SESSION_START'
 AND e1.event_timestamp < e2.event_timestamp
)
 """,

 # No duplicate timestamps
 "unique_timestamps": """
 (SELECT COUNT(*) FROM LIVE.silver_events_temporal) =
 (SELECT COUNT(DISTINCT event_id, event_timestamp) FROM LIVE.silver_events_temporal)
 """,

 # Monotonic sequence numbers
 "sequence_monotonic": """
 NOT EXISTS (
 SELECT 1 FROM LIVE.silver_events_temporal e1
 JOIN LIVE.silver_events_temporal e2
 ON e1.session_id = e2.session_id
 WHERE e1.sequence_num >= e2.sequence_num
 AND e1.event_timestamp < e2.event_timestamp
)
 """
})
def silver_events_temporal():
 """
 Validate temporal consistency of event data.
 """
 return dlt.read_stream("bronze_events")
11. Quality Documentation
11.1 Data Contract Template
data_contract_silver_orders.yaml
contract:
 name: silver_orders
 version: "1.0"
 owner: data-engineering-team
 description: "Cleansed and validated customer orders"

schema:
 fields:
 - name: order_id
 type: string
 nullable: false
 description: "Unique order identifier"
 pii: false

 - name: customer_id
 type: string
 nullable: false
 description: "Customer identifier (FK to dim_customers)"
 pii: false

 - name: email
 type: string
 nullable: true
 description: "Customer email address"
 pii: true

 - name: amount
 type: decimal(18,2)
 nullable: false
 description: "Order total in USD"
 pii: false

quality_rules:
 completeness:
 - field: order_id
 rule: "NOT NULL"
 threshold: 100%

 - field: customer_id
 rule: "NOT NULL"
 threshold: 100%

 validity:
 - field: amount
 rule: "amount > 0"
 threshold: 99.9%

 - field: status
 rule: "IN ('PENDING', 'COMPLETED', 'CANCELLED')"
 threshold: 100%

 freshness:
 - rule: "Data updated within 1 hour"
 threshold: 99%

sla:
 availability: 99.9%
 latency: "< 15 minutes"
 quality_score: "> 99%"

consumers:
 - name: analytics-dashboard
 contact: analytics-team@company.com

 - name: ml-recommendation-service
 contact: ml-team@company.com
11.2 Quality Rule Documentation
def generate_quality_documentation(table_name, rules):
 """
 Generate quality documentation for a table.
 """
 doc = {
 "table": table_name,
 "generated_at": datetime.now().isoformat(),
 "rules": []
 }

 for rule_name, rule_expr in rules.items():
 doc["rules"].append({
 "name": rule_name,
 "expression": rule_expr,
 "category": categorize_rule(rule_name),
 "severity": determine_severity(rule_name),
 "description": generate_description(rule_name, rule_expr)
 })

 return doc

Generate and save documentation
for table in MONITORED_TABLES:
 doc = generate_quality_documentation(table, get_rules(table))
 save_documentation(doc, f"docs/quality/{table}.json")
12. Best Practices
12.1 Quality Rule Design
	Practice
	Description

	Start Simple
	Begin with basic completeness and validity checks

	Layer Appropriately
	Bronze: minimal, Silver: comprehensive, Gold: business rules

	Use expect_or_drop Wisely
	Only drop records that are truly unusable

	Fail Fast on Critical
	Use expect_or_fail for business-critical rules

	Document Rules
	Every rule should have clear documentation

12.2 Monitoring Best Practices
	Practice
	Description

	Track Trends
	Monitor quality over time, not just current state

	Alert on Degradation
	Catch quality issues before they become critical

	Review Quarantine Daily
	Don't let quarantine tables grow unbounded

	Measure Remediation
	Track how quickly issues are resolved

	Report to Stakeholders
	Share quality metrics with data consumers

12.3 Remediation Best Practices
	Practice
	Description

	Automate Where Possible
	Implement auto-remediation for common issues

	Fix at Source
	Address root causes, not just symptoms

	Track Patterns
	Identify recurring issues for permanent fixes

	Define SLAs
	Set clear timelines for remediation by severity

	Learn and Improve
	Use quality issues to improve validation rules

Document Control
	Field
	Value

	Version
	1.0

	Created
	2025-01-29

	Last Review
	2025-01-29

	Next Review
	2025-04-29

	Approved By
	Data Quality Lead

image1.png
#MAST=CH
DIGITAL

